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COEFFICIENT BOUNDS FOR A NEW CLASS OF BI-UNIVALENT
FUNCTIONS ASSOCIATED WITH SUBORDINATION

NAFYA HAMEED MOHAMMED

ABSTRACT. The main purpose of this article is to introduce and investigate the subcategory
Hs:(n, B; ¢) of bi-univalent functions in the open unit disk U related to subordination. More-
over, estimates on coefficient |a,| for functions belong to this subcategory are given applying
different a technique. In addition, smaller upper bound and more accurate estimation than
the previous outcomes are obtained.
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1. Introduction

Let U:= {z € C: |z| < 1} denote the open unit disk in the complex plane C. Let A be the
category of functions f analytic in U that has the following representation

(1.1) f)=z2+4) az", z€U
k=2

and denote by S the subclass of all functions of A which are univalent in U.

If the functions f and g are analytic in U, the function f is called to be subordinate to the
function g, written f(z) < g(z), if there exists a function w analytic in U with |w(z)| < 1,
z € U, and w(0) = 0, such that f = g ow. In particular, if g is univalent in U then the
following equivalence relationship holds

f(z) <9(z) = f(0) = g(0) and f(U) C g(U).

Ma and Minda [21] defined the subcategories of starlike and convex functions utilizing the
concept of subordination, where we make here the assumptions that the function ¢ has positive
real part in U, ¢(U) is symmetric with respect to the real axis with ¢(0) =1, ¢/(0) = J; > 0
and the power series expansion of the form

(1.2) p(2) =1+ Jiz+ Joz? + J32° + ..., 2 € U.
They introduced the categories as follows:
. Sz
S*(¢) = {fEA: f(i)) =< ¢(2), zEU}
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and
"
K(¢) := {feA: 1+Zf (2) =< ¢(2), zeU}.
f'(2)
The categories S*(¢) and K(¢) for ¢(z) = (1+ Az)/(14+ Bz) (-1 < B < A < 1) reduce
to the categories S*[A, B] and K[A, B] of Janowski starlike and Janowski convex functions,
respectively. Note that if 0 < a < 1, then S*[1 — 2a, —1] =: §*(«), the category of starlike
functions of order o and K[1 — 2a, —1] =: K(«) the category of convex functions of order a.
In particular, $* := §*(0) and K := K(0) are the popular categories of starlike and convex
functions in U, respectively. Moreover, the features of the category S; := S*(e*) was studied
by Mendiratta et al. in [22].

The Koebe one-quarter theorem [13] ensures that every function f € S has an inverse f~1,
which is defined by

P =2 ) and @) =w (ol <ol () = §),
with the power series
(1.3) FH(w) = w — agw? + (203 — az)w® — (5a3 — Sagas + as)w* + .. ..

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let ¥
denote the category of bi-univalent functions in U. Lewin [20] studied the bi-univalent function
category ¥ and reported the bound for the second Taylor-Maclaurin coefficient |az|. In fact,
a brief background overview of functions in the category ¥ with interesting examples can be
seen in the article of Srivastava et al. [28]. Deriving from the research [28], bounds for the first
two Taylor-Maclaurin coefficients |az| and |as| of different categories of bi-univalent functions
were reported, for example [16, 23, 24, 27]. Indeed, the study of bi-univalent functions was
successfully revived by the pioneering work of Srivastava et al. [28] recently.

According to [28], many researchers try to study various subclasses of the category X
of bi-univalent functions with different issues such as coefficient bounds and Fekete-Szegd
inequalities in recent years, for example [10, 16, 24, 27]. In this area, some authors applied the
Faber polynomial expansions to find the general bounds of |a,| for the bi-univalent functions
[6,7,8,0, 11,17, 18,26, 29, 30]. Faber [14] studied Faber polynomials that these polynomials
play a major role in geometric function theory.

Utilizing the technique of convolution, Ruscheweyh [25] (see also [!]) defined the operator
R? on the category of analytic functions A as

RMf(2) = f(2)

For A =n € NU{0} we have

z

m, ZEU,AGR,)\>—1.

~ (anlf(z))(n)
n! '

R"f(z) =

The expression R" f(z) is called an nth-order Ruscheweyh derivative of f(z) and the symbol
* stands for Hadamard product (or convolution). We see that (see [19])

R"f(z) =2+ Z o(n, k)agpz®,
k=2
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where
I(n+k)
(k=DI'(n+1)

The object of the present paper is to introduce a new subclass of ¥ and derive bounds
for the general Taylor-Maclaurin coefficients |a,| applying the Faber polynomial expansion
techniques for the functions belong to this subclass where the results are not sharp. Further,
estimates for the first coefficient |aa| of these functions are obtained.

o(n, k) =

2. Main Results

First, we introduce the category Hx(n, ;@) as follows:

Definition 2.1. A function f € ¥ given by (1.1) is said to be in the category Hsx(n, 5; ¢) if
the following conditions are satisfied

(2.1) (R"f(2)) + Bz (R"f(2))" < ¢(2), z€U
and
(2.2) (Rg(w)) + Bz (R"g(w))" < p(w), weT,

where 3 >0, g = f~! and ¢ is the function given by (1.2)

Remark 2.2. For choices of n, 8 and ¢, special cases of this category are obtained below:

(1) For =0 and n = 0, the category Hx(n, 3;¢) reduce to category Hx (o) [3].

(2) For ¢(z) = w (0<d§<1),8=0and n =0, the category Hx(n,3;¢) reduce
to category Hx(0) [28].

(3) For ¢(z) = w (0 <0 < 1) and n = 0, the category Hx(n,S;¢) reduce to
category Hx (0, 5) [29] (see also [15]).

To establish the results, the following outcomes are needed.

S .
Lemma 2.3. [31] Let Y x;2" be a polynomial. Then for any j € N, there are the polynomials
i=1
D3, such that
0 ) J 0 )
(Law) =X oo
i=1 n=j
where
: : JH )" . (@)t
D! = D) (x1,%9,...Tpir1) = ,
h= D@ e anja) = ) il !
where the sum is taken over all nonnegative integers iy, ...,4,—j41 satisfying

i1 +i2+ - +ip—jt1 = J,
i1+2ip+ -+ (n—Jj+1)ip_j41 =n.

It is clear that
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Lemma 2.4. [I, 2] Let f € S be given by (1.1). Then the coefficients of its inverse map
g = f~1 are given in terms of the Faber polynomials of f with

o) = £ ) = 0+ 30 LG o
n=2

where

—_n)! —_n)!

Kd=1o 2an 1?!)(5 it (2(—nJ£ 1?))!'(71 T
(—2n 4(—_2’);)(21 D% et G, 4(-_2?))!!(71 - 5)!(13_5 [a5 + (=0 + 2)aj]
+ - 2n—£5)')('n o) a2 [a6+( 2n + 5)agay] ;a

such that V; (7 < j < n) is a homogeneous polynomial in the variables as,as, ..., a,, and the

expressions such as (for example) (—m)! are to be interpreted symbolically by
(—m)! =T(1—-m):=(—m)(—m—-1)(—-m—2)---, meNy:=NU{0}, N:={1,2,...}.

We remark that the first three terms of K™, are given by
Kl_ = —2a9, K2_3 =3 (2a2 — ag) and Kg_4 =—4 (5(1% — Basag + a4) .

In general, for any real number p the expansion of KL is given below (see for details, [1];
see also [2, p. 349])

1 ! |
Pe—Dpe b P Dr,

KP = pe—-)
e A e T (p—n)ln!

o0
Lemma 2.5. [5] Let f(2) =z + Y. apz*; (n > 2) be a univalent function in U and
k=n

w)=w+ Y bpw® (Jw| <ro(f); rolf) = 1/4).
k=n
Then

bop—1 = nai — a9,—1 and b = —a for (n<k<2n-—2).

Let B be the class of Schwarz functions, that is, w € B if and only if w is an analytic
function with w(0) =0 and |w(z)| < 1 on U.

Lemma 2.6. [13, p. 190] Let the function uw € B with the power series expansion u(z) =
i upz", z € U. Then, |uy| <1 for alln =1,2,3,.... Furthermore, |u,| = 1 for some n
?;: 1,2,3,...) if and only if u(z) = €2, € R.

Lemma 2.7. [18, Corollary 2.3] Let the function u € B with the power series expansion given

by u(z) = > upz™, z€U. If v >0 then
n=1

‘uQ—i—vu%‘ <1l+(v-1) |u1‘
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Lemma 2.8. Let u(z) = u1z + upz? + uzz® +--- € B and v > 0. Then, for alln € N :=
{1,2,3,...} the next inequality holds:

70 <1+ (= 1) u2].

Proof. For u(z) = u1z + uz2® +u3z® +--- € B and a fixed n € N, let denote by ¢;, := e2kmi/n
k€ {1,2,...,n} the n-th order complex roots of the unity. If we define the function v : U — C
by

n
(2.3) v(z) == Zu (exz), z €U,

k=1

S

using the fact that

- e — { 0, if m €N is not a multiple of n,

— n, if m €N is a multiple of n,

it follows
(2.4) v(2) = Up2" + U2 4 ..., 2 € U.

Since wu is an analytic function in U, from the definition (2.3) it follows that v ia also analytic
in U, and v(0) = 0. Moreover, since u € B3, we have

1 & .
)| < =D lue ) < 2 =1, z €T,
k=1

therefore v € B.
Since the function x(z) := 2" is a surjective endomorphism of the unit disc U, setting
¢ :=2z"in (2.4) and using the fact that v € B we deduce that the function ¢ : U — C by

p(2) = unC + ugnC® +uzaC’ + ..., C €T,
belongs to the class B. Now, using Lemma 2.7 for the function ¢ € B given by the above

power series expansion we obtain the required result. O
oo

Theorem 2.9. Let the function f(z) = z+ Y. apz® € Hx(n, B;¢); (p > 2) with 0 < Jo < Jy.
k=p

Then

' Ji 2J1
(25)  lapl < min {pu +B(p = D]o(n,p) \/ p(2p = D[+ B2p = 2)]o(n,2p — 1) }

and

J1
2p — {1+ B(2p - 2)]o(n,2p — 1)’
Proof. For the function f of the form (1.1), we have

|pa;2) - a2P_1| < (

(2.6) (R"f(2)) + Bz (R"f(2))" =1+ D> _k[1+B(k = )]o(n, k)apz"""

k=2

and for its inverse map, ¢ = f~!, by Lemma 2.4 we obtain

(2.7) (R"g(w)) + Bz (R"g(w))" =14 > k[1+ Bk — 1)]o(n, k)bpw*~".
k=2
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where

1
by, = %Kk_kl(az,a?n o)

On the other hand, since f € Hyx(n,S;¢), then by the definition of subordination there are

o0
two functions u,v € B with u(z) = 3 ugz" and v(z) = Y qrz¥, respectively, so that
k=1 k=1

(R"f(2)) + Bz (R"f(2))" = d(u(2)),

and

(R"g(w))" + Bz (R"g(w))" = p(v(w)),
where applying (1.2) and Lemma 2.3, it follows that

(2.8)
oo k
d(u(z)) = 1+ Jyuyz + (Jiug 4+ Joul)2? + ... =1+ Z Z Jo D3 (uy, ug, - -+ Up—gy1) 2"
k=1 s=1
and
ook
(2.9) (W) =14> > J.Di(q1,q2: - -, r—sr1)w".

k=1 s=1

Comparing the corresponding coefficients of (2.6) and (2.8) we obtain

k—1
(2.10) k[1+ Bk — Dlo(n,k)ag =Y JDj_y (u1,uz, ..., up—s).
s=1
Similarly, from (2.7) and (2.9) we get
k—1
1 -k s
(2.11) k1 + B(k —D]o(n, k) K (a2, a3, - ag) = > JDi (a1, Gs).
s=1
Since ag = - -+ = ap—1 = 0, we obtain b, = —a, and since J; > 0 we have
(2.12) u1:-~-:up_2:0, q1:-~-:qp_2:0.

Hence, for k = p from (2.10) and (2.11) using (2.12) it follows that

p—1
(2.13) pll+ B(p — Do(n,pla, =Y JDj_y (ur,us, ... tps) = Jiup_1,
s=1

and
p—1

(2'14) —p[l + ﬁ(p - 1)]0(n,p)ap = Z JsD;s)_l(QM q2, ... 7Qp78) = Jlprl'
s=1

Now by solving the equations (2.13) and (2.14) and applying Lemma 2.6 we get

J1

(2.15) apl < plL+ B(p —1]o(n,p)’
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Also, for k = 2p—1 from (2.10) using Lemma 2.3 and (2.12) after some calculations, it results
in
2p — 1)[1 + B(2p — 2 2p — 1 =J Joul_| = J 2,2
( P — )[ Jrﬁ( P — )]U(nv P — )a2p71 = Jiugp—2 + 2Up 1 = J1 | U(p—1) + jlup_l .
Hence, by Lemma 2.8 with 0 < Jo < Jifrom the above equality we obtain
J:
(2p — D)[1 + B(2p — 2)]o(n,2p — 1)|agy—1| < J1 (1 + (i - 1) \uf,l}) < Ji,
where it follows that
J1
2p — 1)[1 4 B(2p — 2)]o(n,2p — 1)
In addition, regarding Definition 2.1 it follows that
J1
2p — 1)[1 4 B(2p — 2)]o(n,2p — 1)
Further, in view of Lemma 2.5, using the relations (2.16) and (2.17), it results in

Jasp—1] + [bap_1] 21
(2.18) |ap] < \/ » < \/p(2p —1[1+62p—2)]o(n,2p—1)

Therefore, from (2.15) and (2.18), we get the inequality (2.5). In addition, using (2.17) and
Lemma 2.5, it follows that

(2.16) lagp—1| < (

(2.17) |bop—1] < (

J1
2p—1)[1+5(2p - 2)]o(n,2p — 1)
This completes the proof. ]

|pa12, —agp-1| = |bap-1] < (

Remark 2.10. By setting n = 0 in Theorem 2.9 we obtain smaller and more accurate upper

bound than the estimates obtained in [12, Theorem 1] with m =7 =X =1 and 0(z) = 1=;.

[e.e]
Corollary 2.11. Let the function f(2) = z + Y. axz* € Hx(0,1;¢) = Hx(¢); (p > 2) with

k=p
0 S J2 § Jl. Then
J 2J
lap| < min LN i -
p \ p2p—1)
and S
2 1
pa, — agp—1| < 1

Remark 2.12. The obtained bound for |a,| in Corollary 2.11 is an improvement of the
estimates obtained (|a,| < %) in [32, Remark 2] and [26, Theorem 1] with b=1and ¢ — 1~

that is the new upper bound is smaller and more accurate than the previous result.
For

14+ (1—-20)z

N 1—2z

¢(2)

where J; = Jo = 2(1 — §) in Theorem 2.9, we obtain the following result.

(0<d<1, z€l),
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oo
Corollary 2.13. Let the function f(z) = z—i—kz apz® € Hy <n,5; w> ; (p>2). Then
=p

) 2(1-9) 4(1 —9)
la,| < min ,
pl1+Bp—Dlo(n,p)"\ p(2p — D1 + B(2p — 2)]o(n,2p — 1)
and
2(1-9)
2p—1)[1+5(2p - 2)]o(n,2p — 1)
Remark 2.14. For n = 0 in Corollary 2.13, we the obtain next corollary which is an im-

provement of the estimates obtained by Srivastava et al. in [29, Theorem 1], that is the new
upper bound is smaller and more accurate than the previous result.

]paf, —agp-1| < (

Corollary 2.15. Let the function f(z) = z+ § arz® € Hy, <O,B; @) ; (p>2). Then
k=p
: 2(1—9) 4(1-9)
4] < min {pu +Bp— 1] \/ P — 1+ B2 —2) }
and
) 2(1 — 6)
Py = 1= (o T+ B 2
For

¢(2) = Gtz)v (0<~y <1, z€0),

where J; = 2v, Jy = 29?2 in Theorem 2.9, it gives next result.

Corollary 2.16. Let the function f(z) = z + 3. apz" € Hx (n,ﬂ; (%)AY) ; (p>2). Then
k=p

la,| < min et ]
P pll+B(p—1)o(n,p)"\ p2p —1)[1 4 B(2p — 2)]o(n,2p — 1)

and 2
2p — 1)[L+ B(2p — 2)]o(n,2p — 1)

In another special cases, we obtain the next corollaries.

|pa;2) - a2P—1| < (

o0
Corollary 2.17. Let the function f(z) = z+ 3 apz® € Hx (n,B;€%); (p >2). Then
k=p

|ap| < min {p[l Y B = Dlo(mp) \/p(zp —1)[1+B(2p - 2)]o(n,2p — 1) }

and
1

2p — D1+ B(2p —2)]o(n,2p — 1)

]pa?) — agp—1| < (
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Corollary 2.18. Let the function f € Hx(n, ;) be given by (1.1). Then

. Ji 2.1
(2.19) a2l Smin ¢ S B e T\ 3a T 2+ D 7 2)
For

where J; = Jo = 2(1 — §) in Corollary 2.18, we obtain the following result.

Corollary 2.19. Let the function [ € Hx (n,ﬂ; @) be given by (1.1). Then

\as] < min 2(1 - 6) 4(1 = 5)
2= 201+ B)(n+1)"\ 31 +28)(n+ 1)(n + 2)

Remark 2.20. For n = 0 in Corollary 2.19, we obtain the bound presented by Srivastava et
al. in [29, Theorem 2] for |as].

Setting

P(z) = (ij)w (0<y <1, 2€0),

where J; = 2y and Jy = 272 in Corollary 2.18, we obtain the next corollary.

Corollary 2.21. Let the function f € Hx (n,ﬁ; (ifj)v) be given by (1.1). Then

2y 4ry
20+ B)(n+1)"\ 3(1+28)(n+ 1)(n + 2)

|az| < min
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