Mathematical Analysis

Research Paper

COEFFICIENT BOUNDS FOR A NEW CLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SUBORDINATION

NAFYA HAMEED MOHAMMED

Abstract

The main purpose of this article is to introduce and investigate the subcategory $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ of bi-univalent functions in the open unit disk \mathbb{U} related to subordination. Moreover, estimates on coefficient $\left|a_{n}\right|$ for functions belong to this subcategory are given applying different a technique. In addition, smaller upper bound and more accurate estimation than the previous outcomes are obtained.

MSC(2010): 30C45; 30C50.
Keywords: Analytic function, univalent function, bi-univalent function, coefficient estimates, subordination

1. Introduction

Let $\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}$ denote the open unit disk in the complex plane \mathbb{C}. Let \mathcal{A} be the category of functions f analytic in \mathbb{U} that has the following representation

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, z \in \mathbb{U} \tag{1.1}
\end{equation*}
$$

and denote by \mathcal{S} the subclass of all functions of \mathcal{A} which are univalent in \mathbb{U}.
If the functions f and g are analytic in \mathbb{U}, the function f is called to be subordinate to the function g, written $f(z) \prec g(z)$, if there exists a function w analytic in \mathbb{U} with $|w(z)|<1$, $z \in \mathbb{U}$, and $w(0)=0$, such that $f=g \circ w$. In particular, if g is univalent in \mathbb{U} then the following equivalence relationship holds

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Ma and Minda [21] defined the subcategories of starlike and convex functions utilizing the concept of subordination, where we make here the assumptions that the function ϕ has positive real part in $\mathbb{U}, \phi(\mathbb{U})$ is symmetric with respect to the real axis with $\phi(0)=1, \phi^{\prime}(0)=J_{1}>0$ and the power series expansion of the form

$$
\begin{equation*}
\phi(z)=1+J_{1} z+J_{2} z^{2}+J_{3} z^{3}+\ldots, z \in \mathbb{U} . \tag{1.2}
\end{equation*}
$$

They introduced the categories as follows:

$$
\mathcal{S}^{*}(\phi):=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \phi(z), z \in \mathbb{U}\right\}
$$

and

$$
\mathcal{K}(\phi):=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \phi(z), z \in \mathbb{U}\right\} .
$$

The categories $\mathcal{S}^{*}(\phi)$ and $\mathcal{K}(\phi)$ for $\phi(z)=(1+A z) /(1+B z)(-1 \leq B<A \leq 1)$ reduce to the categories $\mathcal{S}^{*}[A, B]$ and $\mathcal{K}[A, B]$ of Janowski starlike and Janowski convex functions, respectively. Note that if $0 \leq \alpha<1$, then $\mathcal{S}^{*}[1-2 \alpha,-1]=: \mathcal{S}^{*}(\alpha)$, the category of starlike functions of order α and $\mathcal{K}[1-2 \alpha,-1]=: \mathcal{K}(\alpha)$ the category of convex functions of order α. In particular, $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ and $\mathcal{K}:=\mathcal{K}(0)$ are the popular categories of starlike and convex functions in \mathbb{U}, respectively. Moreover, the features of the category $\mathcal{S}_{\mathrm{e}}^{*}:=\mathcal{S}^{*}\left(\mathrm{e}^{z}\right)$ was studied by Mendiratta et al. in [22].

The Koebe one-quarter theorem [13] ensures that every function $f \in S$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z(z \in \mathbb{U}) \quad \text { and } \quad f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

with the power series

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.3}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the category of bi-univalent functions in \mathbb{U}. Lewin [20] studied the bi-univalent function category Σ and reported the bound for the second Taylor-Maclaurin coefficient $\left|a_{2}\right|$. In fact, a brief background overview of functions in the category Σ with interesting examples can be seen in the article of Srivastava et al. [28]. Deriving from the research [28], bounds for the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of different categories of bi-univalent functions were reported, for example [16, 23, 24, 27]. Indeed, the study of bi-univalent functions was successfully revived by the pioneering work of Srivastava et al. [28] recently.

According to [28], many researchers try to study various subclasses of the category Σ of bi-univalent functions with different issues such as coefficient bounds and Fekete-Szegö inequalities in recent years, for example [10, 16, 24, 27]. In this area, some authors applied the Faber polynomial expansions to find the general bounds of $\left|a_{n}\right|$ for the bi-univalent functions [$6,7,8,9,11,17,18,26,29,30]$. Faber [14] studied Faber polynomials that these polynomials play a major role in geometric function theory.

Utilizing the technique of convolution, Ruscheweyh [25] (see also [4]) defined the operator R^{λ} on the category of analytic functions \mathcal{A} as

$$
\mathrm{R}^{\lambda} f(z)=f(z) * \frac{z}{(1-z)^{\lambda+1}}, \quad z \in \mathbb{U}, \lambda \in \mathbb{R}, \lambda>-1 .
$$

For $\lambda=n \in \mathbb{N} \cup\{0\}$ we have

$$
\mathrm{R}^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}
$$

The expression $\mathrm{R}^{n} f(z)$ is called an n th-order Ruscheweyh derivative of $f(z)$ and the symbol * stands for Hadamard product (or convolution). We see that (see [19])

$$
\mathrm{R}^{n} f(z)=z+\sum_{k=2}^{\infty} \sigma(n, k) a_{k} z^{k}
$$

where

$$
\sigma(n, k)=\frac{\Gamma(n+k)}{(k-1)!\Gamma(n+1)}
$$

The object of the present paper is to introduce a new subclass of Σ and derive bounds for the general Taylor-Maclaurin coefficients $\left|a_{n}\right|$ applying the Faber polynomial expansion techniques for the functions belong to this subclass where the results are not sharp. Further, estimates for the first coefficient $\left|a_{2}\right|$ of these functions are obtained.

2. Main Results

First, we introduce the category $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ as follows:
Definition 2.1. A function $f \in \Sigma$ given by (1.1) is said to be in the category $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ if the following conditions are satisfied

$$
\begin{equation*}
\left(\mathrm{R}^{n} f(z)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} f(z)\right)^{\prime \prime} \prec \phi(z), \quad z \in \mathbb{U} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathrm{R}^{n} g(w)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} g(w)\right)^{\prime \prime} \prec \phi(w), \quad w \in \mathbb{U} \tag{2.2}
\end{equation*}
$$

where $\beta \geq 0, g=f^{-1}$ and ϕ is the function given by (1.2)
Remark 2.2. For choices of n, β and ϕ, special cases of this category are obtained below:
(1) For $\beta=0$ and $n=0$, the category $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ reduce to category $\mathcal{H}_{\Sigma}(\phi)$ [3].
(2) For $\phi(z)=\frac{1+(1-2 \delta) z}{1-z}(0 \leq \delta<1), \beta=0$ and $n=0$, the category $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ reduce to category $\mathcal{H}_{\Sigma}(\delta)$ [28].
(3) For $\phi(z)=\frac{1+(1-2 \delta) z}{1-z}(0 \leq \delta<1)$ and $n=0$, the category $\mathcal{H}_{\Sigma}(n, \beta ; \phi)$ reduce to category $\mathcal{H}_{\Sigma}(\delta, \beta)$ [29] (see also [15]).

To establish the results, the following outcomes are needed.
Lemma 2.3. [31] Let $\sum_{i=1}^{\infty} x_{i} z^{i}$ be a polynomial. Then for any $j \in \mathbb{N}$, there are the polynomials D_{n}^{j} such that

$$
\left(\sum_{i=1}^{\infty} x_{i} z^{i}\right)^{j}=\sum_{n=j}^{\infty} D_{n}^{j} z^{n}
$$

where

$$
D_{n}^{j}=D_{n}^{j}\left(x_{1}, x_{2}, \ldots x_{n-j+1}\right)=\sum \frac{j!\left(x_{1}\right)^{i_{1}} \ldots\left(x_{n-j+1}\right)^{i_{n-j+1}}}{i_{1}!\ldots i_{n-j+1}!}
$$

where the sum is taken over all nonnegative integers i_{1}, \ldots, i_{n-j+1} satisfying

$$
\left\{\begin{array}{l}
i_{1}+i_{2}+\cdots+i_{n-j+1}=j, \\
i_{1}+2 i_{2}+\cdots+(n-j+1) i_{n-j+1}=n
\end{array}\right.
$$

It is clear that

$$
D_{n}^{1}=x_{n}, \quad D_{n}^{n}=x_{1}^{n}, \quad n \geq 1
$$

Lemma 2.4. [1, 2] Let $f \in \mathcal{S}$ be given by (1.1). Then the coefficients of its inverse map $g=f^{-1}$ are given in terms of the Faber polynomials of f with

$$
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) w^{n}
$$

where

$$
\begin{aligned}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4}+\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geq 7} a_{2}^{n-j} V_{j}
\end{aligned}
$$

such that $V_{j}(7 \leq j \leq n)$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$, and the expressions such as (for example) ($-m$)! are to be interpreted symbolically by

$$
(-m)!\equiv \Gamma(1-m):=(-m)(-m-1)(-m-2) \cdots, m \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}, \mathbb{N}:=\{1,2, \ldots\}
$$

We remark that the first three terms of K_{n-1}^{-n} are given by

$$
K_{1}^{-2}=-2 a_{2}, \quad K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right) \quad \text { and } \quad K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
$$

In general, for any real number p the expansion of K_{n}^{p} is given below (see for details, [1]; see also [2, p. 349])

$$
K_{n}^{p}=p a_{n+1}+\frac{p(p-1)}{2} D_{n}^{2}+\frac{p!}{(p-3)!3!} D_{n}^{3}+\ldots+\frac{p!}{(p-n)!n!} D_{n}^{n}
$$

Lemma 2.5. [5] Let $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ be a univalent function in \mathbb{U} and

$$
f^{-1}(w)=w+\sum_{k=n}^{\infty} b_{k} w^{k} \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq 1 / 4\right)
$$

Then

$$
b_{2 n-1}=n a_{n}^{2}-a_{2 n-1} \quad \text { and } \quad b_{k}=-a_{k} \quad \text { for } \quad(n \leq k \leq 2 n-2) .
$$

Let \mathcal{B} be the class of Schwarz functions, that is, $w \in \mathcal{B}$ if and only if w is an analytic function with $w(0)=0$ and $|w(z)|<1$ on \mathbb{U}.
Lemma 2.6. [13, p. 190] Let the function $u \in \mathcal{B}$ with the power series expansion $u(z)=$ $\sum_{n=1}^{\infty} u_{n} z^{n}, z \in \mathbb{U}$. Then, $\left|u_{n}\right| \leq 1$ for all $n=1,2,3, \ldots$. Furthermore, $\left|u_{n}\right|=1$ for some n $(n=1,2,3, \ldots)$ if and only if $u(z)=e^{i \theta} z^{n}, \theta \in \mathbb{R}$.
Lemma 2.7. [18, Corollary 2.3] Let the function $u \in \mathcal{B}$ with the power series expansion given by $u(z)=\sum_{n=1}^{\infty} u_{n} z^{n}, z \in \mathbb{U}$. If $\gamma \geq 0$ then

$$
\left|u_{2}+\gamma u_{1}^{2}\right| \leq 1+(\gamma-1)\left|u_{1}^{2}\right| .
$$

Lemma 2.8. Let $u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots \in \mathcal{B}$ and $\gamma \geq 0$. Then, for all $n \in \mathbb{N}:=$ $\{1,2,3, \ldots\}$ the next inequality holds:

$$
\left|u_{2 n}+\gamma u_{n}^{2}\right| \leq 1+(\gamma-1)\left|u_{n}^{2}\right| .
$$

Proof. For $u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots \in \mathcal{B}$ and a fixed $n \in \mathbb{N}$, let denote by $\varepsilon_{k}:=e^{2 k \pi i / n}$, $k \in\{1,2, \ldots, n\}$ the n-th order complex roots of the unity. If we define the function $v: \mathbb{U} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
v(z):=\frac{1}{n} \sum_{k=1}^{n} u\left(\varepsilon_{k} z\right), z \in \mathbb{U}, \tag{2.3}
\end{equation*}
$$

using the fact that

$$
\sum_{k=1}^{n} \varepsilon_{k}^{m}=\left\{\begin{array}{lll}
0, & \text { if } & m \in \mathbb{N} \\
n, & \text { if } & m \in \mathbb{N} \text { is a a multiple of } n \\
\text { is a multiple of } n
\end{array}\right.
$$

it follows

$$
\begin{equation*}
v(z)=u_{n} z^{n}+u_{2 n} z^{2 n}+\ldots, z \in \mathbb{U} . \tag{2.4}
\end{equation*}
$$

Since u is an analytic function in \mathbb{U}, from the definition (2.3) it follows that v ia also analytic in \mathbb{U}, and $v(0)=0$. Moreover, since $u \in \mathcal{B}$, we have

$$
|v(z)| \leq \frac{1}{n} \sum_{k=1}^{n}\left|u\left(\mathrm{e}^{-2 \mathrm{i} k \pi / n} z\right)\right|<\frac{n}{n}=1, z \in \mathbb{U},
$$

therefore $v \in \mathcal{B}$.
Since the function $\chi(z):=z^{n}$ is a surjective endomorphism of the unit disc \mathbb{U}, setting $\zeta:=z^{n}$ in (2.4) and using the fact that $v \in \mathcal{B}$ we deduce that the function $\varphi: \mathbb{U} \rightarrow \mathbb{C}$ by

$$
\varphi(z):=u_{n} \zeta+u_{2 n} \zeta^{2}+u_{3 n} \zeta^{3}+\ldots, \zeta \in \mathbb{U}
$$

belongs to the class \mathcal{B}. Now, using Lemma 2.7 for the function $\varphi \in \mathcal{B}$ given by the above power series expansion we obtain the required result.
Theorem 2.9. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}(n, \beta ; \phi) ;(p \geq 2)$ with $0 \leq J_{2} \leq J_{1}$. Then

$$
\begin{equation*}
\left|a_{p}\right| \leq \min \left\{\frac{J_{1}}{p[1+\beta(p-1)] \sigma(n, p)}, \sqrt{\frac{2 J_{1}}{p(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}}\right\} \tag{2.5}
\end{equation*}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{J_{1}}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)} .
$$

Proof. For the function f of the form (1.1), we have

$$
\begin{equation*}
\left(\mathrm{R}^{n} f(z)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} f(z)\right)^{\prime \prime}=1+\sum_{k=2}^{\infty} k[1+\beta(k-1)] \sigma(n, k) a_{k} z^{k-1} \tag{2.6}
\end{equation*}
$$

and for its inverse map, $g=f^{-1}$, by Lemma 2.4 we obtain

$$
\begin{equation*}
\left(\mathrm{R}^{n} g(w)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} g(w)\right)^{\prime \prime}=1+\sum_{k=2}^{\infty} k[1+\beta(k-1)] \sigma(n, k) b_{k} w^{k-1} \tag{2.7}
\end{equation*}
$$

where

$$
b_{k}=\frac{1}{k} K_{k-1}^{-k}\left(a_{2}, a_{3}, \ldots, a_{k}\right)
$$

On the other hand, since $f \in \mathcal{H}_{\Sigma}(n, \beta ; \phi)$, then by the definition of subordination there are two functions $u, v \in \mathcal{B}$ with $u(z)=\sum_{k=1}^{\infty} u_{k} z^{n}$ and $v(z)=\sum_{k=1}^{\infty} q_{k} z^{k}$, respectively, so that

$$
\left(\mathrm{R}^{n} f(z)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} f(z)\right)^{\prime \prime}=\phi(u(z))
$$

and

$$
\left(\mathrm{R}^{n} g(w)\right)^{\prime}+\beta z\left(\mathrm{R}^{n} g(w)\right)^{\prime \prime}=\phi(v(w))
$$

where applying (1.2) and Lemma 2.3, it follows that

$$
\begin{equation*}
\phi(u(z))=1+J_{1} u_{1} z+\left(J_{1} u_{2}+J_{2} u_{1}^{2}\right) z^{2}+\ldots=1+\sum_{k=1}^{\infty} \sum_{s=1}^{k} J_{s} D_{k}^{s}\left(u_{1}, u_{2}, \cdots, u_{k-s+1}\right) z^{k} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi(v(w))=1+\sum_{k=1}^{\infty} \sum_{s=1}^{k} J_{s} D_{k}^{s}\left(q_{1}, q_{2}, \ldots, q_{k-s+1}\right) w^{k} \tag{2.9}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.6) and (2.8) we obtain

$$
\begin{equation*}
k[1+\beta(k-1)] \sigma(n, k) a_{k}=\sum_{s=1}^{k-1} J_{s} D_{k-1}^{s}\left(u_{1}, u_{2}, \ldots, u_{k-s}\right) . \tag{2.10}
\end{equation*}
$$

Similarly, from (2.7) and (2.9) we get

$$
\begin{equation*}
k[1+\beta(k-1)] \sigma(n, k) \frac{1}{k} K_{k-1}^{-k}\left(a_{2}, a_{3}, \ldots, a_{k}\right)=\sum_{s=1}^{k-1} J_{s} D_{k-1}^{s}\left(q_{1}, q_{2}, \ldots, q_{k-s}\right) . \tag{2.11}
\end{equation*}
$$

Since $a_{2}=\cdots=a_{p-1}=0$, we obtain $b_{p}=-a_{p}$ and since $J_{1}>0$ we have

$$
\begin{equation*}
u_{1}=\cdots=u_{p-2}=0, \quad q_{1}=\cdots=q_{p-2}=0 . \tag{2.12}
\end{equation*}
$$

Hence, for $k=p$ from (2.10) and (2.11) using (2.12) it follows that

$$
\begin{equation*}
p[1+\beta(p-1)] \sigma(n, p) a_{p}=\sum_{s=1}^{p-1} J_{s} D_{p-1}^{s}\left(u_{1}, u_{2}, \ldots, u_{p-s}\right)=J_{1} u_{p-1}, \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
-p[1+\beta(p-1)] \sigma(n, p) a_{p}=\sum_{s=1}^{p-1} J_{s} D_{p-1}^{s}\left(q_{1}, q_{2}, \ldots, q_{p-s}\right)=J_{1} q_{p-1} . \tag{2.14}
\end{equation*}
$$

Now by solving the equations (2.13) and (2.14) and applying Lemma 2.6 we get

$$
\begin{equation*}
\left|a_{p}\right| \leq \frac{J_{1}}{p[1+\beta(p-1)] \sigma(n, p)} \tag{2.15}
\end{equation*}
$$

Also, for $k=2 p-1$ from (2.10) using Lemma 2.3 and (2.12) after some calculations, it results in

$$
(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1) a_{2 p-1}=J_{1} u_{2 p-2}+J_{2} u_{p-1}^{2}=J_{1}\left(u_{2(p-1)}+\frac{J_{2}}{J_{1}} u_{p-1}^{2}\right)
$$

Hence, by Lemma 2.8 with $0 \leq J_{2} \leq J_{1}$ from the above equality we obtain

$$
(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)\left|a_{2 p-1}\right| \leq J_{1}\left(1+\left(\frac{J_{2}}{J_{1}}-1\right)\left|u_{p-1}^{2}\right|\right) \leq J_{1}
$$

where it follows that

$$
\begin{equation*}
\left|a_{2 p-1}\right| \leq \frac{J_{1}}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)} \tag{2.16}
\end{equation*}
$$

In addition, regarding Definition 2.1 it follows that

$$
\begin{equation*}
\left|b_{2 p-1}\right| \leq \frac{J_{1}}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)} \tag{2.17}
\end{equation*}
$$

Further, in view of Lemma 2.5, using the relations (2.16) and (2.17), it results in

$$
\begin{equation*}
\left|a_{p}\right| \leq \sqrt{\frac{\left|a_{2 p-1}\right|+\left|b_{2 p-1}\right|}{p}} \leq \sqrt{\frac{2 J_{1}}{p(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}} \tag{2.18}
\end{equation*}
$$

Therefore, from (2.15) and (2.18), we get the inequality (2.5). In addition, using (2.17) and Lemma 2.5, it follows that

$$
\left|p a_{p}^{2}-a_{2 p-1}\right|=\left|b_{2 p-1}\right| \leq \frac{J_{1}}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}
$$

This completes the proof.
Remark 2.10. By setting $n=0$ in Theorem 2.9 we obtain smaller and more accurate upper bound than the estimates obtained in [12, Theorem 1] with $m=\tau=\lambda=1$ and $\theta(z)=\frac{z}{1-z}$.

Corollary 2.11. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}(0,1 ; \phi)=: \mathcal{H}_{\Sigma}(\phi) ; \quad(p \geq 2)$ with $0 \leq J_{2} \leq J_{1}$. Then

$$
\left|a_{p}\right| \leq \min \left\{\frac{J_{1}}{p}, \sqrt{\frac{2 J_{1}}{p(2 p-1)}}\right\}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{J_{1}}{2 p-1}
$$

Remark 2.12. The obtained bound for $\left|a_{p}\right|$ in Corollary 2.11 is an improvement of the estimates obtained $\left(\left|a_{p}\right| \leq \frac{J_{1}}{p}\right)$ in [32, Remark 2] and [26, Theorem 1] with $b=1$ and $q \rightarrow 1^{-}$ that is the new upper bound is smaller and more accurate than the previous result.

For

$$
\phi(z)=\frac{1+(1-2 \delta) z}{1-z} \quad(0 \leq \delta<1, \quad z \in \mathbb{U}),
$$

where $J_{1}=J_{2}=2(1-\delta)$ in Theorem 2.9, we obtain the following result.

Corollary 2.13. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}\left(n, \beta ; \frac{1+(1-2 \delta) z}{1-z}\right) ;(p \geq 2)$. Then

$$
\left|a_{p}\right| \leq \min \left\{\frac{2(1-\delta)}{p[1+\beta(p-1)] \sigma(n, p)}, \sqrt{\frac{4(1-\delta)}{p(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}}\right\}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{2(1-\delta)}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}
$$

Remark 2.14. For $n=0$ in Corollary 2.13, we the obtain next corollary which is an improvement of the estimates obtained by Srivastava et al. in [29, Theorem 1], that is the new upper bound is smaller and more accurate than the previous result.

Corollary 2.15. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}\left(0, \beta ; \frac{1+(1-2 \delta) z}{1-z}\right) ;(p \geq 2)$. Then

$$
\left|a_{p}\right| \leq \min \left\{\frac{2(1-\delta)}{p[1+\beta(p-1)]}, \sqrt{\frac{4(1-\delta)}{p(2 p-1)[1+\beta(2 p-2)]}}\right\}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{2(1-\delta)}{(2 p-1)[1+\beta(2 p-2)]}
$$

For

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(0<\gamma \leq 1, z \in \mathbb{U})
$$

where $J_{1}=2 \gamma, J_{2}=2 \gamma^{2}$ in Theorem 2.9, it gives next result.
Corollary 2.16. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}\left(n, \beta ;\left(\frac{1+z}{1-z}\right)^{\gamma}\right) ;(p \geq 2)$. Then

$$
\left|a_{p}\right| \leq \min \left\{\frac{2 \gamma}{p[1+\beta(p-1)] \sigma(n, p)}, \sqrt{\frac{4 \gamma}{p(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}}\right\}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{2 \gamma}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)} .
$$

In another special cases, we obtain the next corollaries.
Corollary 2.17. Let the function $f(z)=z+\sum_{k=p}^{\infty} a_{k} z^{k} \in \mathcal{H}_{\Sigma}\left(n, \beta ; \mathrm{e}^{z}\right) ;(p \geq 2)$. Then

$$
\left|a_{p}\right| \leq \min \left\{\frac{1}{p[1+\beta(p-1)] \sigma(n, p)}, \sqrt{\frac{2}{p(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)}}\right\}
$$

and

$$
\left|p a_{p}^{2}-a_{2 p-1}\right| \leq \frac{1}{(2 p-1)[1+\beta(2 p-2)] \sigma(n, 2 p-1)} .
$$

Corollary 2.18. Let the function $f \in \mathcal{H}_{\Sigma}(n, \beta ; \phi)$ be given by (1.1). Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{J_{1}}{2(1+\beta)(n+1)}, \sqrt{\frac{2 J_{1}}{3(1+2 \beta)(n+1)(n+2)}}\right\} . \tag{2.19}
\end{equation*}
$$

For

$$
\phi(z)=\frac{1+(1-2 \delta) z}{1-z} \quad(0 \leq \delta<1, z \in \mathbb{U}),
$$

where $J_{1}=J_{2}=2(1-\delta)$ in Corollary 2.18, we obtain the following result.
Corollary 2.19. Let the function $f \in \mathcal{H}_{\Sigma}\left(n, \beta ; \frac{1+(1-2 \delta) z}{1-z}\right)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\delta)}{2(1+\beta)(n+1)}, \sqrt{\frac{4(1-\delta)}{3(1+2 \beta)(n+1)(n+2)}}\right\}
$$

Remark 2.20. For $n=0$ in Corollary 2.19, we obtain the bound presented by Srivastava et al. in [29, Theorem 2] for $\left|a_{2}\right|$.

Setting

$$
\phi(z)=\left(\frac{1+z}{1-z}\right)^{\gamma} \quad(0<\gamma \leq 1, z \in \mathbb{U})
$$

where $J_{1}=2 \gamma$ and $J_{2}=2 \gamma^{2}$ in Corollary 2.18, we obtain the next corollary.
Corollary 2.21. Let the function $f \in \mathcal{H}_{\Sigma}\left(n, \beta ;\left(\frac{1+z}{1-z}\right)^{\gamma}\right)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \gamma}{2(1+\beta)(n+1)}, \sqrt{\frac{4 \gamma}{3(1+2 \beta)(n+1)(n+2)}}\right\}
$$

References

[1] H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130:179-222, 2006.
[2] H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126:343-367, 2002.
[3] R.M. Ali, S.K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent MaMinda starlike and convex functions, Appl. Math. Lett., 25:344-351, 2012.
[4] H.S. Al-Amiri, On Ruscheweh derivatives. Ann. Poln. Math., 38:87-94, 1980.
[5] O. Alrefal and M. Ali, General coefficient estimates for bi-univalent functions: a new approach, Turk. J. Math., 44:240-251, 2020.
[6] S. Altınkaya and S. Yalçın, On the some subclasses of bi-univalent functions related to the Faber polynomial expansions and the Fibonacci numbers, Rend. Mat. Appl., 41:105-116, 2020.
[7] E.A. Adegani, S. Bulut and A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55:405-413, 2018.
[8] E.A. Adegani, N.E. Cho, D. Alimohammadi and A. Motamednezhad, Coefficient bounds for certain two subclasses of bi-univalent functions, AIMS Math., 6(9):9126-9137, 2021
[9] E.A. Adegani, A. Motamednezhad and S. Bulut, Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination, Stud. Univ. Babeş-Bolyai Math., 65:57-66, 2020.
[10] M.K. Aouf, S.M. Madian and A. O. Mostafa, Bi-univalent properties for certain class of Bazilevič functions defined by convolution and with bounded boundary rotation, J. Egyptian Math. Soc., 27(11):1-9, 2019.
[11] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30:1567-1575, 2016.
[12] S. Bulut, S. Salehian and A. Motamednezhad, Comprehensive subclass of m-fold symmetric bi-univalent functions defined by subordination, Afr. Mat., 32(3): 531-541, 2021.
[13] P.L. Duren, Univalent Functions. Grundlehren der mathematischen Wissenschaften, Springer-Verlag New York, Berlin, Heidelberg, Tokyo, 259, 1983.
[14] G. Faber, Über polynomische Entwickelungen, Math. Ann., 57:389-408, 1903.
[15] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., 43:383389, 2014.
[16] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24:1569-1573, 2011.
[17] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41(5):1103-1119, 2015.
[18] S.G. Hamidi and J.M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris, 354:365-370, 2016.
[19] S. Hussain, S. Khan, M. A. Zaighum, M. Darus and Z. Shareef, Coefficients bounds for certain subclass of biunivalent functions associated with Ruscheweyh-Differential operator, J. Complex Anal., 2017, Article ID 2826514, 2017.
[20] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18:63-68, 1967.
[21] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Internat. Press, Cambridge, MA, USA, 157-169, 1992.
[22] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38:365-386, 2015.
[23] S. Salehian and A. Zireh, Coefficient estimates for certain subclass of meromorphic and bi-univalent functions, Commun. Korean Math. Soc., 32:389-397, 2017.
[24] G. Murugusundaramoorthy and T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17(1):27-36, 2018.
[25] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49:109-115, 1975.
[26] G. Saravanan and K. Muthunagai, Coefficient estimates and Fekete-Szegö inequality for a subclass of Bi-univalent functions defined by symmetric Q-derivative operator by using Faber polynomial techniques, Period. Eng. Nat. Sci., 6(1):241-250, 2018.
[27] H.M. Srivastava, Ş. Altınkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43:1873-1879, 2019.
[28] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23:1188-1192, 2010.
[29] H.M. Srivastava, S. Sümer Eker and R.M. Ali, Coeffcient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29:1839-1845, 2015.
[30] H.M. Srivastava, A. Zireh and S. Hajiparvaneh, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Filomat, 32(9): 3143-3153, 2018.
[31] P.G. Todorov, On the Faber polynomials of the univalent functions of class Σ, J. Math. Anal. Appl., 162:268-276, 1991.
[32] A. Zireh, E. A. Adegani, M. Bidkham, Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate, Math. Slovaca, 68:369-378, 2018.
(Nafya Hameed Mohammed) Department of Mathematics, College of Basic Education, University of Raparin, Kurdistan Region-Iraq.

Email address: nafya.mohammad@uor.edu.krd

